Emissions of CO2 and CH4 from Agricultural Soil with Kitchen Compost at Different Temperatures

Author:

Chau Tran Thi Minh,Someya Takashi,Akao Satoshi,Nakamura Masato,Oritate Fumiko,Somura Hiroaki,Yamane Shinzo,Maeda MorihiroORCID

Abstract

AbstractEmissions of CO2 from the soil are mainly derived from soil microbial respiration, whereas CH4 emissions originate from anaerobic degradation of organic matter via microbial processes. Kitchen waste compost is used in the agricultural sector to improve soil quality. However, abiotic CO2 and CH4 emissions from soils amended with kitchen waste compost under aerobic conditions remain uncertain. Temperature plays an important role in organic matter decomposition in both biotic and abiotic pathways. This study aimed to evaluate biotic and abiotic emissions of CO2 and CH4 from soils receiving kitchen compost at different temperatures. Ten grams of soil amended with or without 0.1 g kitchen compost (1%) were sterilized or non-sterilized. The mixture and soil-only samples were incubated in 100-mL glass bottles at 20, 30, and 35 °C for 28 d under an aerobic condition. The results showed that CO2 and CH4 emissions increased at higher temperatures and compost application rates (p < 0.05). Emissions of CO2 mainly occurred via biotic pathways. Abiotic processes were potential pathways for CH4 generation, particularly at high temperatures of 35 °C. There was 20–24% of C in kitchen compost changed to CO2 and less than 0.1% to CH4. Our results suggest that global warming enhances abiotic CO2 and CH4 emissions and may contribute to further global warming.

Funder

Japan Society for the Promotion of Science

Cabinet Office, Government of Japan

Okayama University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3