Attenuating Effect of an Extract of Cd-Hyperaccumulator Solanum nigrum on the Growth and Physio-chemical Changes of Datura innoxia Under Cd Stress

Author:

Abeed Amany H. A.,Salama Fawzy M.

Abstract

Abstract Purpose The use of plant extracts obtained from plants that are highly tolerant to heavy metal toxicity has been beneficial in improving the growth of plants grown under metal toxicity conditions. A lab experiment was performed to elucidate the alleviating role of foliar applied cadmium (Cd)-hyperaccumulator Solanum nigrum (S. nigrum) extract on Datura innoxia (D. innoxia) plants grown under Cd stress (0, 50, and 100 mg Cd kg-1 soil). Methods Growth parameters, photosynthetic pigment content, osmo-metabolic compounds, reduced glutathione and phytochelatins content, oxidative damage, and lignin content and its related enzyme (cell wall-bound peroxidase, POX) were determined. Results Apart from the foliar application response of S. nigrum leaf extract (SNE) in either Cd exposed or non-Cd exposed plants, growth parameters of D. innoxia plant grown under both Cd concentrations (50 and 100 mg Cd kg-1 soil) in terms of root and shoot fresh, dry weight, length, and leaf area were noticeably diminished by 29 and 51%, 29 and 54%, 35 and 70%, 40 and 53%, 30 and 69%, 40 and 60%, and 11 and 23%, respectively, compared with untreated control plants. Foliar delivered SNE secured the photosynthetic pigment, free amino acids, soluble proteins, and soluble sugar content. Additionally, it lessened the adverse effects of Cd stress on D. innoxia plants by curtailing the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 28 and 27%, and 21 and 23%, respectively, compared with the plants subjected to 50 and 100 mg Cd kg-1 only. The findings herein indicated that the plant water extract and their interactions in the investigated Cd rates significantly augmented phenolics, alkaloids, reduced glutathione and phytochelatins content. Cell wall stiffening in D. innoxia indicated that lignin content and POX were significantly higher in plants exposed to 100 mg Cd kg-1 soil displaying increase values of 275 and 300%, respectively, against non-Cd treated control. The magnitude of increment imposed by Cd stress was lessened by using SNE that reflects on adequate cell growth advocated by limited lignification, in terms of lignin content, and downregulated POX activity. Owing to SNE application, root and leaves Cd contents were efficiently reduced reflecting apparent plant liveliness compared with the SNE non-treated Cd-stressed plants. Conclusions The outcomes of this study designate that foliar application of the Cd-hyperaccumulator S. nigrum leaf extract can be counted as an unconventional and innovative approach in the alleviation of Cd stress and can be employed as integrated practice when Cd-contaminated regions were exploited for sustainable agriculture of the multipurpose plants.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3