Prebiotics: A Solution for Improving Plant Growth, Soil Health, and Carbon Sequestration?

Author:

Alahmad AbdelrahmanORCID,Edelman Lucas,Castel Lisa,Bernardon-Mery Aude,Laval Karine,Trinsoutrot-Gattin Isabelle,Thioye Babacar

Abstract

AbstractSoil fertility and productivity are severely impacted by exploitation and degradation processes. These threats, coupled with population growth and climatic changes, compel us to search for innovative agroecological solutions. Prebiotics, a type of soil biostimulant, are used to enhance soil conditions and plant growth and may play a role in carbon (C) sequestration. Two commercial prebiotics, K1® and NUTRIGEO L® (referred to as SPK and SPN, respectively), were assessed for their effects on agricultural soil cultivated with Zea mays L., compared to untreated soil or control (SP). Analyses were performed at two harvesting dates: three weeks (D1) and ten weeks (D2) after the application of prebiotics. Plant growth parameters and soil characteristics were measured, focusing on soil organic matter, soil bacterial and fungal communities, and plant root mycorrhization. Regarding physicochemical parameters, both prebiotic treatments increased soil electrical conductivity, cation exchange capacity, and soluble phosphorus (P) while decreasing nitrates. Meanwhile, the SPN treatment was distinct in elevating specific cationic minerals, such as calcium (Ca) and boron (B), at D2. At the microbial level, each prebiotic induced a unique shift in the indigenous bacterial and fungal communities’ abundance and diversity, evident at D2. Simultaneously, specific microbial taxa were recruited by each prebiotic treatment, such as Caulobacter, Sphingobium, and Massilia from bacteria and Mortierella globalpina and Schizothecium carpinicola from fungi in SPK as well as Chitinophaga, Neobacillus, and Rhizomicrobium from bacteria and Sordariomycetes and Mortierella minutissima from fungi in SPN. These biomarkers were identified as (a) saprotrophs, (b) plant growth-promoting bacteria and fungi, (c) endohyphal bacteria, and (d) endophytic and symbiotic microbiota. This result was reflected in the increase in glomalin content and mycorrhization rate in the treated soils, especially by SPN. We observed that these effects led to an increase in plant biomass (shoots by 19% and 22.8% and roots by 47.8% and 35.7% dry weights for SPK and SPN, respectively) and contributed to an increase in soil C content (organic C by 8.4% and total C by 8.9%), particularly with SPN treatment. In light of these findings, the use of prebiotics ten weeks after application not only increased plant growth by improving soil characteristics and shaping its native microbial community but also demonstrated the potential to enhance C sequestration.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3