Ultrastructural, Secondary Metabolite, and Antioxidant Modulation in Response to Salt-Affected Habitats Induced Oxidative Stress and Their Accumulation in Malva parviflora L. and Rumex dentatus L.

Author:

Kazamel Amany M.,Haroun Samia A.,Noureldin Alshaymaa A.,El-Sherbiny Ghada A.,El-Shahaby Omer A.,Sofy Mahmoud R.ORCID,AlBakry Alaa F.,Gamel Rasha M. E.

Abstract

AbstractSalinity stress is a major abiotic factor that affects medicinal plant growth, performance, and secondary compounds. Malva parviflora L. and Rumex dentatus L. plants were collected from three habitats in the northeastern Nile Delta governorates of Damietta and El-Dakahlia. Conductivity (salinity) classified the habitats as mesophytic, moderately saline, and saline. Chemical and physical soil characteristics varied by habitat. Results show that M. parviflora L. and R. dentatus L. had high soluble sugars, total carbohydrates, electrolyte leakage, and proline in the saline habitat. In contrast, mesophytic habitats showed low content. In addition, R. dentatus L. had more antioxidant enzymes and elements in saline habitats than in mesophytic habitats. In saline habitats, M. parviflora L. and R. dentatus L. were characterized by more calcium and sodium increase than mesophytic habitats. Moreover, R. dentatus L. had more phenols, alkaloids, flavonoids, anthocyanin, and tannins under saline conditions than M. parviflora. Meanwhile, in the saline habitat, plant hormones, i.e., indole acetic acid and gibberellic acid, decreased significantly in both M. parviflora and R. dentatus than in the mesophytic habitat. Scanning Electron Microscopy (SEM) of the tested plants showed the highest stomatal frequency and area on the lower surface of mesophytic plant leaves compared to either its upper surface or both leaf surfaces in saline habitat. Hence, it can be concluded that R. dentatus plant can mitigate the negative effects of salinity by improving the qualitative and quantitative performance under salinity stress more than M. parviflora plant.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3