Effects of Potassium and Nanocapsule of Potassium on Pepper Growth and Physiological Changes in High-Temperature Stress

Author:

Halaji Bhnaz,Haghighi MaryamORCID,Amiri Azam,Kappel NoémiORCID

Abstract

AbstractAbiotic stresses have been observed to cause alterations in the morphology, physiology, and biochemistry of plants. However, in recent years, the utilization of nanocompounds has emerged as a strategy to induce modifications in multiple facets of plant biology. These modifications include plant growth, nutrient absorption, the production of significant secondary metabolites, and the improvement of plants’ resistance against both abiotic and biotic stress factors. A completely randomized factorial experiment with 12 replications was created. Potassium sources including control, potassium (K), and nanocapsule-potassium (N-K) with concentration 1 µM and temperature treatments including control temperature (25 °C) and high-temperature stress (35 °C) were applied as treatments. In the control treatment, proline was increased at the high temperature, whereas proline was reduced at both treated temperatures by K and N-K. High temperature raised electrolyte leakage (EL), which peaked in the control treatment but was lowered by K and N-K. Temperature-dependent increase in glucose and fructose was observed in control and K treatments when the temperature was 35 °C, but no significant difference was observed between different levels of K at 35 °C. When K was not applied at high temperatures, the main stress indicators such as antioxidant activity (DPPH) and malondialdehyde (MDA) rose significantly, as did the water potential and linoleic acid. When high temperatures were applied, nanocapsule-potassium applied in high temperatures had the lowest stress indices. In conclusion, stress indices diminish when nanocapsule-potassium is applied under high temperatures. Additionally, nanocapsule-potassium applied at high temperatures was preferable to K applied at high temperatures in terms of pepper growth and resistance measures. Likewise, the application of nanocapsule-potassium at high temperatures alters the fatty acid composition of membranes and antioxidant enzymes.

Funder

Hungarian University of Agriculture and Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3