Fertilizer Addition Modifies Utilization of Different P Sources in Upland Rice on Strongly P-fixing Andosols

Author:

Mundschenk EvaORCID,Remus Rainer,Augustin Jürgen,Wissuwa Matthias,Staudinger Christiana,Oburger Eva,George Eckhard,Holz Maire

Abstract

Abstract Aims High Phosphorus (P) efficiencies such as internal P utilization efficiency (PUE) and P acquisition efficiency (PAE) are crucial for upland rice production, particularly on highly P-fixing soils like Andosols. While the effect of root traits associated with high PAE in upland rice has been studied intensively, less attention has been given to the origin of P (native soil-P versus fertilizer-P) taken up by plants when evaluating differences in P efficiency. Here we aim to evaluate the efficiency of different upland rice genotypes to acquire native soil-P and fertilizer-P. Methods Four upland rice genotypes with varying PAE were grown in an Andosol at low- and high-P fertilization level and harvested 9 and 34 days after emergence. Fertilizer-P was labeled with 33P to distinguish between the efficiency to acquire P originating from native soil and fertilizer by measuring plant P uptake. Results Increased fertilizer supply enhanced native soil-P uptake. Under low-P conditions the genotype DJ123 showed a superior PAE and an increased acquisition of native soil-P while AB199 was identified to have a superior internal PUE under P deficient conditions. Differences between genotypes in overall PAE under high-P conditions were not significant but the distinction of P sources showed that genotype DJ123 acquired significantly more native soil-P per unit root than all other genotypes. Conclusions Our results indicate that variations in PAE among genotypes are associated with their ability to access native soil-P. DJ123 emerged as the most adept genotype in acquiring sparingly soluble native soil-P and future studies should unravel the rhizosphere processes underlying increased PAE of native soil-P.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft

Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3