Publisher
Springer Science and Business Media LLC
Subject
History and Philosophy of Science,General Social Sciences,Philosophy,General Social Sciences,Philosophy
Reference6 articles.
1. Biagioli, F. (2014). What does it mean that “Space can be transcendental without the axioms being so”? Journal for General Philosophy of Science,
45(1), 1–21.
2. Biagioli, F. (2018). Articulating space in terms of transformation groups: Helmholtz and Cassirer. Journal for the History of Analytical Philosophy,
6(3), 115–131.
3. Dedekind, R. (1872). Stetigkeit und irrationale Zahlen. Braunschweig: Friedrich Vieweg und Sohn.
4. Dedekind, R. (1963). Continuity and irrational numbers. In W. W. Beman (Trans.), Essays on the theory of numbers (pp. 1–30). New York: Dover.
5. Halsted, G. (1899). Report on progress in non-Euclidean geometry. The American Mathematical Monthly,
6(10), 219–233.