Completely Solving the Quintic by Iteration

Author:

Crass ScottORCID

Abstract

AbstractIn the late nineteenth century, Felix Klein revived the problem of solving the quintic equation from the moribund state into which Galois had placed it. Klein’s approach was a mix of algebra and geometry built on the structure of the regular icosahedron. His method’s key feature is the connection between the quintic’s Galois group and the rotational symmetries of the icosahedron. Roughly a century after Klein’s work, Doyle and McMullen developed an algorithm for solving the quintic that also exploited icosahedral symmetry. Their innovation was to employ a symmetrical dynamical system in one complex variable. In effect, the dynamical behavior provides for a partial breaking of the polynomial’s symmetry and the extraction of two roots following one iterative run of the map. The recent discovery of a map whose dynamics breaks all of the quintic’s symmetry allows for five roots to emerge from a single pass. After sketching some algebraic and geometric background, the discussion works out an explicit procedure that deploys the special map in order to solve the quintic in a complete sense.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3