Abstract
AbstractThis article presents a survey of recent developments on pseudodifferential operators on noncommutative tori. We describe currently available constructions of those operators: by means of a $$C^{*}$$
C
∗
-dynamical system, by using an analogue of the Fourier series representation of a function in the (commutative) torus $$C^\infty ({\mathbb {T}}^n)$$
C
∞
(
T
n
)
, as Rieffel deformations of the standard pseudodifferential operators on $$C^\infty ({\mathbb {T}}^n)$$
C
∞
(
T
n
)
, and in association to certain spectral triples.
Funder
International Mathematical Union
Universität Potsdam
Universidad Nacional de Colombia
National University of Colombia
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Cohen, P.B., Connes, A.: Conformal geometry of the irrational rotation algebra. Preprint MPI/92-93 (1992), 12 pp. http://www.mpim-bonn.mpg.de/preblob/4766 (1992)
2. Connes, A., Moscovici, H.: Modular curvature for noncommutative two-tori. J. Am. Math. Soc. 27(3), 639–684 (2014). https://doi.org/10.1090/S0894-0347-2014-00793-1
3. Essouabri, D., Iochum, B., Lévy, C., Sitarz, A.: Spectral action on noncommutative torus. J. Noncommut. Geom. 2(1), 53–123 (2008). https://doi.org/10.4171/JNCG/16
4. Fathizadeh, F., Khalkhali, M.: The Gauss-Bonnet theorem for noncommutative two tori with a general conformal structure. J. Noncommut. Geom. 6(3), 457–480 (2012). https://doi.org/10.4171/JNCG/97
5. Fathizadeh, F., Khalkhali, M.: Scalar curvature for the noncommutative two torus. J. Noncommut. Geom. 7(4), 1145–1183 (2013). https://doi.org/10.4171/JNCG/145