Abstract
Abstract
Purpose
Investigating the performance of the new Dophi™ M150E Microwave Ablation System, in terms of temperature distribution, ablation size and shape, reproducibility.
Materials and Methods
The Dophi™ M150E Microwave Ablation System was tested on ex vivo liver, lung and kidney, at 6 different settings of time, power and number of MW antennas (single antenna: 50 and 100 W at 5 and 10 min; double antenna: 75 W at 5 and 10 min). The temperature distribution was recorded by Fiber Bragg Grating sensors, placed at different distances from the antennas. The ablation axes were measured and the sphericity index was calculated.
Results
The standard deviation of ablation axes was < 5 mm, except at the highest energy and time setting for the lung. A maximum temperature rise of ~ 80 °C was measured. The measured ablation axes are overall comparable with the manufacture’s values, especially at lower power and with one MW antenna (average maximum difference is 7 mm). The mean sphericity index of 0.95, 0.79 and 0.9 was obtained for the liver, lung and kidney, respectively, with a single antenna. With double antenna setup, the sphericity index was closer to 1 when 75 W for 10 min were used.
Conclusions
Dophi™ M150E allows good reproducibility of ablation axes for all cases except in the lung at the highest energy level. With one antenna, an almost spherical ablation area for the liver and kidney was obtained. Using double antenna results in more homogeneous temperature distribution within the tissue compared to single antenna.
Graphical Abstract
Publisher
Springer Science and Business Media LLC