In Situ Fenestration and Carotid-Subclavian Bypass for Left Subclavian Artery Revascularization During Thoracic Endovascular Aortic Repair

Author:

Fan Bowen,Fang Kun,Tian Chuan,Fang Jie,Chen Dong,Zhao Jiawei,Luo Mingyao,Shu ChangORCID

Abstract

Abstract Purpose To evaluate the safety and feasibility of left subclavian artery (LSA) revascularization techniques during thoracic endovascular aortic repair (TEVAR)—the in situ needle fenestration (ISNF) technique and the carotid-subclavian bypass (CS-Bp)—for complicated aortic pathologies. Methods A retrospective single-center observational study was conducted to identify all patients with thoracic aortic pathologies who underwent TEVAR with LSA revascularization using either CS-Bp or ISNFs from January 2014 to December 2020. Results One hundred and twelve consecutive patients who received TEVAR with LSA revascularization were included. Among them, 69 received CS-Bp and 43 received ISNF (29 using the Futhrough adjustable puncture needles, 14 using the binding stent-graft puncture systems). Technical success, defined as achieving aortic arch pathology exclusion and LSA preservation, was attained in 99.1% patients. Early mortality was 0.9%. Major adverse events within 30 days, including one cerebral hemorrhage, one cervical incision hemorrhage, one stroke and two paraplegia, were exclusively observed in the CS-Bp group. Immediate type I, II and III endoleaks occurred in 0%, 4.7% and 2.3% in the ISNF group, respectively, compared to 0%, 2.9% and 0% in the CS-Bp group.One hundred and eight (97.2%) patients were available for follow-up at a median 50 (maiximum of 103) months, revealing a LSA patency rates of 99.1%. Six patients died during follow-ups—five in the CS-Bp group and one in the ISNF group. Cause of death include one aortic-related stent-graft infection, three non-related and two with unknow causes. The survival exhibited no significantly different between the ISNF (97.7%) and CS-Bp (89.9%) groups (p = 0.22). Conclusions Both CS-Bp and ISNF are feasible techniques for LSA reconstruction in TEVAR. ISNF, whether using Futhrough or BPS, seems to be competitive with CS-Bp. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3