What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet
-
Published:2020-05-11
Issue:4
Volume:216
Page:
-
ISSN:0038-6308
-
Container-title:Space Science Reviews
-
language:en
-
Short-container-title:Space Sci Rev
Author:
Greenwood Richard C.,Anand Mahesh
Abstract
AbstractVenus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement ($\Delta ^{17}\text{O}$
Δ
17
O
) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the $\Delta ^{17}\text{O}$
Δ
17
O
composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the $\Delta ^{17}\text{O}$
Δ
17
O
composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to $\Delta ^{17}\text{O}$
Δ
17
O
, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems.
Funder
Science and Technology Facilities Council
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Astronomy and Astrophysics
Reference199 articles.
1. J. Alday, C.F. Wilson, P.G.J. Irwin, K.S. Olsen, L. Baggio, F. Montmessin, A. Trokhimovskiy, O. Korablev, A.A. Fedorova, D.A. Belyaev, A. Grigoriev, A. Patrakeev, A. Shakun, Oxygen isotopic ratios in Martian water vapour observed by ACS MIR on board the ExoMars Trace Gas Orbiter. Astron. Astrophys. 630, A91 (2019). https://doi.org/10.1051/0004-6361/201936234 2. C.M.OD. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012). https://doi.org/10.1126/science.1223474 3. Y. Alibert, J. Venturini, R. Helled, S. Ataiee, R. Burn, L. Senecal, W. Benz, L. Mayer, C. Mordasini, S.P. Quanz, M. Schönbächler, The formation of Jupiter by hybrid pebble-planetesimal accretion. Nat. Astron. 2, 873–877 (2018). https://doi.org/10.1038/s41550-018-0557-2 4. C. Allen, J. Allton, G. Lofgren, K. Righter, M. Zolensky, Curating NASA’s extraterrestrial samples—past, present, and future. Chem. Erde 71, 1–20 (2011). https://doi.org/10.1016/j.chemer.2010.12.003 5. I. Angelo, J.F. Rowe, S.B. Howell, E.V. Quintana, M. Still, A.W. Mann, B. Burningham, T. Barclay, D.R. Ciardi, D. Huber, S.R. Kane, Kepler-1649b: an exo-venus in the solar neighborhood. Astron. J. 153(4), 162 (2017). https://doi.org/10.3847/1538-3881/aa615f
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|