Earth’s Nitrogen and Carbon Cycles

Author:

Halama RalfORCID,Bebout GrayORCID

Abstract

AbstractUnderstanding the Earth’s geological nitrogen (N) and carbon (C) cycles is fundamental for assessing the distribution of these volatiles between solid Earth (core, mantle and crust), oceans and atmosphere. This Special Communication about the Earth’s N and C cycles contains material that is relevant for researchers who are interested in the Topical Collection on planetary evolution “Reading Terrestrial Planet Evolution in Isotopes and Element Measurements”. Variations in the fluxes of N and C between these major reservoirs through geological time influenced the evolution and determined the unique composition of the Earth’s atmosphere. Here we review several key geological aspects of the N and C cycles of which our understanding has significantly advanced during the last decade through field-based, experimental and theoretical studies. Subduction zones are the most important pathway of both N and C from the Earth’s surface into the deep Earth. A key question in the flux quantification is how much of the volatile elements is stored in the downgoing slab and introduced into the mantle and how much is returned back to the surface and the atmosphere through arc magmatism. For N, the retention of N as $\text{NH}_{4}^{+}$ NH 4 + in minerals has a major influence on fluxes between reservoirs. The temperature-dependent stability of $\text{NH}_{4}^{+}$ NH 4 + -bearing minerals determines whether N is predominantly retained in the slab to mantle depths (in subduction zones with a low geothermal gradient) or devolatilized (in subduction zones with a high geothermal gradient). Several lines of evidence suggest that the mantle is regassing with respect to N due to a net influx of subducted N over time, but this issue is highly debated and evidence to the contrary also exists. Nevertheless, there is consensus that the majority of the planetary N budget is stored in the Earth’s mantle, with the continental crust also constituting a significant N reservoir. For C, release from the subducting slab occurs through decarbonation reactions, dissolution and formation of carbonatitic liquids, but reprecipitation of C in the slab or the forearc mantle wedge may limit the effectiveness of direct return of C into the atmosphere. Carbon release through regional metamorphism in collision zone orogens also has potentially profound effects on C release into the atmosphere and consensus has emerged that such orogens are sources rather than sinks of atmospheric CO2. On shorter timescales, contact metamorphism through interaction of mantle-derived magmas with C-bearing country rocks, and the resulting release of large quantities of CH4 and/or CO2, has been linked to global warming events.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3