Dynamics and Evolution of Venus’ Mantle Through Time

Author:

Rolf TobiasORCID,Weller MattORCID,Gülcher AnnaORCID,Byrne PaulORCID,O’Rourke Joseph G.ORCID,Herrick RobertORCID,Bjonnes EvanORCID,Davaille AnneORCID,Ghail RichardORCID,Gillmann CedricORCID,Plesa Ana-CatalinaORCID,Smrekar SuzanneORCID

Abstract

AbstractThe dynamics and evolution of Venus’ mantle are of first-order relevance for the origin and modification of the tectonic and volcanic structures we observe on Venus today. Solid-state convection in the mantle induces stresses into the lithosphere and crust that drive deformation leading to tectonic signatures. Thermal coupling of the mantle with the atmosphere and the core leads to a distinct structure with substantial lateral heterogeneity, thermally and compositionally. These processes ultimately shape Venus’ tectonic regime and provide the framework to interpret surface observations made on Venus, such as gravity and topography. Tectonic and convective processes are continuously changing through geological time, largely driven by the long-term thermal and compositional evolution of Venus’ mantle. To date, no consensus has been reached on the geodynamic regime Venus’ mantle is presently in, mostly because observational data remains fragmentary. In contrast to Earth, Venus’ mantle does not support the existence of continuous plate tectonics on its surface. However, the planet’s surface signature substantially deviates from those of tectonically largely inactive bodies, such as Mars, Mercury, or the Moon. This work reviews the current state of knowledge of Venus’ mantle dynamics and evolution through time, focussing on a dynamic system perspective. Available observations to constrain the deep interior are evaluated and their insufficiency to pin down Venus’ evolutionary path is emphasised. Future missions will likely revive the discussion of these open issues and boost our current understanding by filling current data gaps; some promising avenues are discussed in this chapter.

Funder

Research Council of Norway

University of Oslo

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3