Backscattered Solar Lyman-$\alpha $ Emission as a Tool for the Heliospheric Boundary Exploration

Author:

Baliukin IgorORCID,Bertaux Jean-Loup,Bzowski MaciejORCID,Izmodenov VladislavORCID,Lallement Rosine,Provornikova Elena,Quémerais EricORCID

Abstract

AbstractThis review summarizes our current understanding of the outer heliosphere and local interstellar medium (LISM) inferred from observations and modeling of interplanetary Lyman-$\alpha $ α emission. The emission is produced by solar Lyman-$\alpha $ α photons (121.567 nm) backscattered by interstellar H atoms inflowing to the heliosphere from the LISM. Studies of Lyman-$\alpha $ α radiation determined the parameters of interstellar hydrogen within a few astronomical units from the Sun. The interstellar hydrogen atoms appeared to be decelerated, heated, and shifted compared to the helium atoms. The detected deceleration and heating proved the existence of secondary hydrogen atoms created near the heliopause. This finding supports the discovery of a Hydrogen Wall beyond the heliosphere consisting of heated hydrogen observed in HST/GHRS Lyman-$\alpha $ α absorption spectra toward nearby stars. The shift of the interstellar hydrogen bulk velocity was the first observational evidence of the global heliosphere asymmetry confirmed later by Voyager in situ measurements. SOHO/SWAN all-sky maps of the backscattered Lyman-$\alpha $ α intensity identified variations of the solar wind mass flux with heliolatitude and time. In particular, two maxima at mid-latitudes were discovered during solar activity maximum, which Ulysses missed due to its specific trajectory. Finally, Voyager/UVS and New Horizons/Alice UV spectrographs discovered extraheliospheric Lyman-$\alpha $ α emission. We review these scientific breakthroughs, outline open science questions, and discuss potential future heliospheric Lyman-$\alpha $ α experiments.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3