Reverberation in Tidal Disruption Events: Dust Echoes, Coronal Emission Lines, Multi-wavelength Cross-correlations, and QPOs

Author:

van Velzen Sjoert,Pasham Dheeraj R.,Komossa Stefanie,Yan Lin,Kara Erin A.

Abstract

AbstractStellar tidal disruption events (TDEs) are typically discovered by transient emission due to accretion or shocks of the stellar debris. Yet this luminous flare can be reprocessed by gas or dust that inhabits a galactic nucleus, resulting in multiple reverberation signals. Nuclear dust heated by the TDE will lead to an echo at infrared wavelengths (1-10 μm) and transient coronal lines in optical spectra of TDEs trace reverberation by gas that orbits the black hole. Both of these signal have been detected, here we review this rapidly developing field. We also review the results that have been extracted from TDEs with high-quality X-ray light curves: quasi periodic oscillations (QPOs), reverberation lags of fluorescence lines, and cross-correlations with emission at other wavelengths. The observational techniques that are covered in this review probe the emission from TDEs over a wide range of scales: from $\sim 1$ 1  light year to the innermost parts of the newly formed accretion disk. They provide insights into important properties of TDEs such as their bolometric output and the geometry of the accretion flow. While reverberation signals are not detected for every TDE, we anticipate they will become more commonplace when the next generation of X-ray and infrared instruments become operational.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3