A Comparison of Presolar Isotopic Signatures in Laboratory-Studied Primitive Solar System Materials and Comet 67P/Churyumov-Gerasimenko: New Insights from Light Elements, Halogens, and Noble Gases

Author:

Hoppe PeterORCID,Rubin MartinORCID,Altwegg KathrinORCID

Abstract

AbstractComets are considered the most primitive planetary bodies in our Solar System. ESA’s Rosetta mission to Jupiter family comet 67P/Churyumov-Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In a previous paper (Hoppe et al. in Space Sci. Rev. 214:106, 2018) we reviewed the results for comet 67P/CG from the first four years of data reduction after arrival of Rosetta at the comet in August 2014 and discussed them in the context of respective meteorite data. Since then important new isotope data of several elements, among them the biogenic elements H, C, N, and O, for comet 67P/CG, the Tagish Lake meteorite, and C-type asteroid Ryugu became available which provide new insights into the formation conditions of small planetary bodies in the Solar System’s earliest history. To complement the picture on comet 67P/CG and its context to other primitive Solar System materials, especially meteorites, that emerged from our previous paper, we review here the isotopic compositions of H, C, and N in various volatile molecules, of O in water and a suite of other molecules, of the halogens Cl and Br, and of the noble gas Kr in comet 67P/CG. Furthermore, we also review the H isotope data obtained in the refractory organics of the dust grains collected in the coma of 67P/CG. These data are compared with the respective meteoritic and Ryugu data and spectroscopic observations of other comets and extra-solar environments; Cl, Br, and Kr data are also evaluated in the context of a potential late supernova contribution, as suggested by the Si- and S-isotopic data of 67P/CG.

Funder

State of Bern

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

European Space Agency

Max Planck Institute for Chemistry

International Space Science Institute

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3