Abstract
AbstractThis paper describes the conic operator splitting method (COSMO) solver, an operator splitting algorithm and associated software package for convex optimisation problems with quadratic objective function and conic constraints. At each step, the algorithm alternates between solving a quasi-definite linear system with a constant coefficient matrix and a projection onto convex sets. The low per-iteration computational cost makes the method particularly efficient for large problems, e.g. semidefinite programs that arise in portfolio optimisation, graph theory, and robust control. Moreover, the solver uses chordal decomposition techniques and a new clique merging algorithm to effectively exploit sparsity in large, structured semidefinite programs. Numerical comparisons with other state-of-the-art solvers for a variety of benchmark problems show the effectiveness of our approach. Our Julia implementation is open source, designed to be extended and customised by the user, and is integrated into the Julia optimisation ecosystem.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献