Control of Partial Differential Equations via Physics-Informed Neural Networks

Author:

García-Cervera Carlos J.,Kessler Mathieu,Periago FranciscoORCID

Abstract

AbstractThis paper addresses the numerical resolution of controllability problems for partial differential equations (PDEs) by using physics-informed neural networks. Error estimates for the generalization error for both state and control are derived from classical observability inequalities and energy estimates for the considered PDE. These error bounds, that apply to any exact controllable linear system of PDEs and in any dimension, provide a rigorous justification for the use of neural networks in this field. Preliminary numerical simulation results for three different types of PDEs are carried out to illustrate the performance of the proposed methodology.

Funder

Fundación Séneca

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

Reference47 articles.

1. Bárcenas-Petisco, J.A.: Optimal control for neural ode in a long time horizon and applications to the classification and simultaneous controllability problems. https://hal.archives-ouvertes.fr/hal-03299270/ (2022)

2. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in Machine Learning: a survey. J. Mach. Learn. Res. 18, 1–43 (2018)

3. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

4. Beck, C., Martin, H., Jentzen, A., Benno, K.: An overview on deep learning-based approximation methods for partial differential equations. arXiv:2012.12348 (2021)

5. Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving the Kolmogorov PDE by means of deep learning. J. Sci. Comput. 88(3), 1–28 (2021)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3