Convex Quadratic Equation

Author:

Lin Li-GangORCID,Liang Yew-Wen,Hsieh Wen-Yuan

Abstract

AbstractTwo main results (A) and (B) are presented in algebraic closed forms. (A) Regarding the convex quadratic equation, an analytical equivalent solvability condition and parameterization of all solutions are formulated, for the first time in the literature and in a unified framework. The philosophy is based on the matrix algebra, while facilitated by a novel equivalence/coordinate transformation (with respect to the much more challenging case of rank-deficient Hessian matrix). In addition, the parameter-solution bijection is verified. From the perspective via (A), a major application is re-examined that accounts for the other main result (B), which deals with both the infinite and finite-time horizon nonlinear optimal control. By virtue of (A), the underlying convex quadratic equations associated with the Hamilton–Jacobi equation, Hamilton–Jacobi inequality, and Hamilton–Jacobi–Bellman equation are explicitly solved, respectively. Therefore, the long quest for the constituent of the optimal controller, gradient of the associated value function, can be captured in each solution set. Moving forward, a preliminary to exactly locate the optimality using the state-dependent (resp., differential) Riccati equation scheme is prepared for the remaining symmetry condition.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3