Application of Portfolio Optimization to Achieve Persistent Time Series

Author:

Zlatniczki AdamORCID,Telcs Andras

Abstract

AbstractThe greater the persistence in a financial time series, the more predictable it becomes, allowing for the development of more effective investment strategies. Desirable attributes for financial portfolios include persistence, smoothness, long memory, and higher auto-correlation. We argue that these properties can be achieved by adjusting the composition weights of the portfolio. Considering the fractal nature of typical financial time series, the fractal dimension emerges as a natural metric to gauge the smoothness of the portfolio trajectory. Specifically, the Hurst exponent is designed for measuring the persistence of time series. In this paper, we introduce an optimization method inspired by the Hurst exponent and signal processing to mitigate the irregularities in the portfolio trajectory. We illustrate the effectiveness of this approach using real data from an S &P100 dataset.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3