Lower Bounds on the Noiseless Worst-Case Complexity of Efficient Global Optimization

Author:

Xu Wenjie,Jiang YuningORCID,Maddalena Emilio T.,Jones Colin N.

Abstract

AbstractEfficient global optimization is a widely used method for optimizing expensive black-box functions. In this paper, we study the worst-case oracle complexity of the efficient global optimization problem. In contrast to existing kernel-specific results, we derive a unified lower bound for the oracle complexity of efficient global optimization in terms of the metric entropy of a ball in its corresponding reproducing kernel Hilbert space. Moreover, we show that this lower bound nearly matches the upper bound attained by non-adaptive search algorithms, for the commonly used squared exponential kernel and the Matérn kernel with a large smoothness parameter $$\nu $$ ν . This matching is up to a replacement of d/2 by d and a logarithmic term $$\log \frac{R}{\epsilon }$$ log R ϵ , where d is the dimension of input space, R is the upper bound for the norm of the unknown black-box function, and $$\epsilon $$ ϵ is the desired accuracy. That is to say, our lower bound is nearly optimal for these kernels.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

nccr - on the move

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11(1), 1–36 (2019)

2. Bansal, S., Calandra, R., Xiao, T., Levine, S., Tomlin, C.J.: Goal-driven dynamics learning via Bayesian optimization. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 5168–5173. IEEE (2017)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2) (2012)

4. Bull, A.D.: Convergence rates of efficient global optimization algorithms. J. Mach. Learn. Res. 12(10) (2011)

5. Cai, X., Scarlett, J.: On lower bounds for standard and robust Gaussian process bandit optimization. In: International Conference on Machine Learning, pp. 1216–1226. PMLR (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3