1. Agarwal, A., Bottou, L.: A lower bound for the optimization of finite sums. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 37, pp. 78–86. JMLR, Inc. and Microtome Publishing, Lille (2015). https://proceedings.mlr.press/v37/agarwal15.html
2. Alkousa, M., Gasnikov, A., Dvurechensky, P., Sadiev, A., Razouk, L.: An Approach for Non-convex Uniformly Concave Structured Saddle Point Problem. arXiv:2202.06376 (2022)
3. Allen-Zhu, Z.: Katyusha: the first direct acceleration of stochastic gradient methods. J. Mach. Learn. Res. 18(221), 1–51 (2018)
4. Allen-Zhu, Z., Qu, Z., Richtárik, P., Yuan, Y.: Even faster accelerated coordinate descent using non-uniform sampling. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 48, pp. 1110–1119. JMLR, Inc. and Microtome Publishing, New York. http://proceedings.mlr.press/v48/allen-zhuc16.html (2016)
5. Beznosikov, A., Gorbunov, E., Gasnikov, A.: Derivative-free method for composite optimization with applications to decentralized distributed optimization. IFAC-PapersOnLine 53(2), 4038–4043 (2020)