Abstract
AbstractI study a dynamic variant of the Dixit–Stiglitz (Am Econ Rev 67(3), 1977) model of monopolistic competition by introducing price stickiness à la Fershtman and Kamien (Econometrica 55(5), 1987). The analysis is restricted to bounded quantity and price paths that fulfill the necessary conditions for an open-loop Nash equilibrium. I show that there exists a symmetric steady state and that its stability depends on the degree of product differentiation. When moving from complements to perfect substitutes, the steady state is either a locally asymptotically unstable (spiral) source, a stable (spiral) sink or a saddle point. I further apply the Hopf bifurcation theorem and prove the existence of limit cycles, when passing from a stable to an unstable steady state. Lastly, I provide a numerical example and show that there exists a stable limit cycle.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献