Abstract
AbstractIn this paper we generalize the Interior Point-Proximal Method of Multipliers (IP-PMM) presented in Pougkakiotis and Gondzio (Comput Optim Appl 78:307–351, 2021. 10.1007/s10589-020-00240-9) for the solution of linear positive Semi-Definite Programming (SDP) problems, allowing inexactness in the solution of the associated Newton systems. In particular, we combine an infeasible Interior Point Method (IPM) with the Proximal Method of Multipliers (PMM) and interpret the algorithm (IP-PMM) as a primal-dual regularized IPM, suitable for solving SDP problems. We apply some iterations of an IPM to each sub-problem of the PMM until a satisfactory solution is found. We then update the PMM parameters, form a new IPM neighbourhood, and repeat this process. Given this framework, we prove polynomial complexity of the algorithm, under mild assumptions, and without requiring exact computations for the Newton directions. We furthermore provide a necessary condition for lack of strong duality, which can be used as a basis for constructing detection mechanisms for identifying pathological cases within IP-PMM.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献