Abstract
AbstractThe expectation functionals, which arise in risk-neutral bi-level stochastic linear models with random lower-level right-hand side, are known to be continuously differentiable, if the underlying probability measure has a Lebesgue density. We show that the gradient may fail to be local Lipschitz continuous under this assumption. Our main result provides sufficient conditions for Lipschitz continuity of the gradient of the expectation functional and paves the way for a second-order optimality condition in terms of generalized Hessians. Moreover, we study geometric properties of regions of strong stability and derive representation results, which may facilitate the computation of gradients.
Funder
Universität Duisburg-Essen
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献