A Second-Order Sufficient Optimality Condition for Risk-Neutral Bi-level Stochastic Linear Programs

Author:

Claus MatthiasORCID

Abstract

AbstractThe expectation functionals, which arise in risk-neutral bi-level stochastic linear models with random lower-level right-hand side, are known to be continuously differentiable, if the underlying probability measure has a Lebesgue density. We show that the gradient may fail to be local Lipschitz continuous under this assumption. Our main result provides sufficient conditions for Lipschitz continuity of the gradient of the expectation functional and paves the way for a second-order optimality condition in terms of generalized Hessians. Moreover, we study geometric properties of regions of strong stability and derive representation results, which may facilitate the computation of gradients.

Funder

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on bilevel optimization under uncertainty;European Journal of Operational Research;2023-12

2. Existence of solutions for a class of bilevel stochastic linear programs;European Journal of Operational Research;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3