Funder
National Natural Science Fund of China
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15(1), 2773–2832 (2014)
2. Chang, J., Chen, Y., Qi, L.: Computing eigenvalues of large scale sparse tensors arising from a hypergraph. SIAM J. Sci. Comput. 38(6), A3618–A3643 (2016)
3. Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 37(1), 290–319 (2016). https://doi.org/10.1137/15M1010725
4. Cui, C.F., Dai, Y.H., Nie, J.: All real eigenvalues of symmetric tensors. Siam J. Matrix Anal. Appl. 35(4), 1582–601 (2014)
5. Gautier, A., Hein, M.: Tensor norm and maximal singular vectors of non-negative tensors-a Perron-Frobenius theorem, a Collatz-Wieland characterization and a generalized power method. Linear Algebra Appl. 505, 313–43 (2016)