Abstract
AbstractWe study continuous, equality knapsack problems with uniform separable, non-convex objective functions that are continuous, antisymmetric about a point, and have concave and convex regions. For example, this model captures a simple allocation problem with the goal of optimizing an expected value where the objective is a sum of cumulative distribution functions of identically distributed normal distributions (i.e., a sum of inverse probit functions). We prove structural results of this model under general assumptions and provide two algorithms for efficient optimization: (1) running in linear time and (2) running in a constant number of operations given preprocessing of the objective function.
Funder
Office of Naval Research
School of Public and International Affairs, Virginia Polytechnic Institute and State University
Publisher
Springer Science and Business Media LLC