Abstract
AbstractIn this paper, we study the non-asymptotic convergence rate of the DCA (difference-of-convex algorithm), also known as the convex–concave procedure, with two different termination criteria that are suitable for smooth and non-smooth decompositions, respectively. The DCA is a popular algorithm for difference-of-convex (DC) problems and known to converge to a stationary point of the objective under some assumptions. We derive a worst-case convergence rate of $$O(1/\sqrt{N})$$
O
(
1
/
N
)
after N iterations of the objective gradient norm for certain classes of DC problems, without assuming strong convexity in the DC decomposition and give an example which shows the convergence rate is exact. We also provide a new convergence rate of O(1/N) for the DCA with the second termination criterion. Moreover, we derive a new linear convergence rate result for the DCA under the assumption of the Polyak–Łojasiewicz inequality. The novel aspect of our analysis is that it employs semidefinite programming performance estimation.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献