Current Limit Avoidance Algorithms for DEMO Operation

Author:

di Grazia Luigi Emanuel,Frattolillo Domenico,De Tommasi Gianmaria,Mattei MassimilianoORCID

Abstract

AbstractTokamaks are the most promising devices to prove the feasibility of energy production using nuclear fusion on Earth which is foreseen as a possible source of energy for the next centuries. In large tokamaks with superconducting poloidal field (PF) coils, the problem of avoiding saturation of the currents is of paramount importance, especially for a reactor such as the European demonstration fusion power plant DEMO. Indeed, reaching the current limits during plasma operation may cause a loss of control of the plasma shape and/or current, leading to a major disruption. Therefore, a current limit avoidance (CLA) system is essential to assure safe operation. Three different algorithms to be implemented within a CLA system are proposed in this paper: two are based on online solutions of constrained optimization problems, while the third one relies on dynamic allocation. The performance assessment for all the proposed solutions is carried out by considering challenging operation scenarios for the DEMO reactor, such as the case where more than one PF current simultaneously saturates during the discharge. An evaluation of the computational burden needed to solve the allocation problem for the various proposed alternatives is also presented, which shows the compliance of the optimization-based approaches with the envisaged deadlines for real-time implementation of the DEMO plasma magnetic control system.

Funder

EUROfusion

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

Reference39 articles.

1. Albanese, R., Ambrosino, R., Ariola, M., De Tommasi, G., Pironti, A., Cavinato, M., Neto, A., Piccolo, F., Sartori, F., Ranz, R., Carraro, L., Canton, A., Cavazzana, R., Fassina, A., Franz, P., Innocente, P., Luchetta, A., Manduchi, G., Marrelli, L., Martines, E., Peruzzo, S., Puiatti, M., Scarin, P., Spizzo, G., Spolaore, M., Valisa, M., Gorini, G., Nocente, M., Sozzi, C., Apicella, M., Gabellieri, L., Maddaluno, G., Ramogida, G.: Diagnostics, data acquisition and control of the divertor test tokamak experiment. Fusion Eng. Des. 122, 365–374 (2017). https://doi.org/10.1016/j.fusengdes.2017.05.118

2. Albanese, R., Ambrosino, R., Mattei, M.: CREATE-NL+: a robust control-oriented free boundary dynamic plasma equilibrium solver. Fusion Eng. Des. 96–97, 664–667 (2015). https://doi.org/10.1016/j.fusengdes.2015.06.162. (Proceedings of the 28th Symposium On Fusion Technology (SOFT-28))

3. Albanese, R., Villone, F.: The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks. Nucl. Fusion 38(5), 723 (1998). https://doi.org/10.1088/0029-5515/38/5/307

4. Ambrosino, G., Ariola, M., Pironti, A., Portone, A., Walker, M.: A control scheme to deal with coil current saturation in a Tokamak. IEEE Trans. Control Syst. Technol. 9(6), 831–838 (2001). https://doi.org/10.1109/87.960346

5. Andersen, E.D., Andersen, K.D.: The Mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.) High Performance Optimization, pp. 197–232. Springer, Boston (2000)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3