Gradient Descent Provably Escapes Saddle Points in the Training of Shallow ReLU Networks

Author:

Cheridito PatrickORCID,Jentzen ArnulfORCID,Rossmannek FlorianORCID

Abstract

AbstractDynamical systems theory has recently been applied in optimization to prove that gradient descent algorithms bypass so-called strict saddle points of the loss function. However, in many modern machine learning applications, the required regularity conditions are not satisfied. In this paper, we prove a variant of the relevant dynamical systems result, a center-stable manifold theorem, in which we relax some of the regularity requirements. We explore its relevance for various machine learning tasks, with a particular focus on shallow rectified linear unit (ReLU) and leaky ReLU networks with scalar input. Building on a detailed examination of critical points of the square integral loss function for shallow ReLU and leaky ReLU networks relative to an affine target function, we show that gradient descent circumvents most saddle points. Furthermore, we prove convergence to global minima under favourable initialization conditions, quantified by an explicit threshold on the limiting loss.

Funder

Deutsche Forschungsgemeinschaft

HORIZON EUROPE European Research Council

Schmidt Futures

Universität Münster

Publisher

Springer Science and Business Media LLC

Reference46 articles.

1. Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)

2. Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-parameterization. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning (09–15 Jun 2019), Proceedings of Machine Learning Research, vol. 97, pp. 242–252. PMLR

3. Bah, B., Rauhut, H., Terstiege, U., Westdickenberg, M.: Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers. Inf. Inference J. IMA 11, 307–353 (2021)

4. Bhojanapalli, S., Neyshabur, B., Srebro, N.: Global optimality of local search for low rank matrix recovery. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc (2016)

5. Cheridito, P., Jentzen, A., Riekert, A., Rossmannek, F.: A proof of convergence for gradient descent in the training of artificial neural networks for constant target functions. J. Complex. 72, 101646 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3