1. Adolphs, L., Daneshmand, H., Lucchi, A., Hofmann, T.: Local saddle point optimization: A curvature exploitation approach. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 486–495. PMLR (2019)
2. Akimoto, Y.: Saddle point optimization with approximate minimization oracle. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 493–501. ACM (2021)
3. Alacaoglu, A., Malitsky, Y., Cevher, V.: Convergence of adaptive algorithms for weakly convex constrained optimization. In: Advances in Neural Information Processing Systems (2021)
4. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4(1), 27–67 (1997)
5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer, New York (2011)