Bregman-Golden Ratio Algorithms for Variational Inequalities

Author:

Tam Matthew K.,Uteda Daniel J.ORCID

Abstract

AbstractVariational inequalities provide a framework through which many optimisation problems can be solved, in particular, saddle-point problems. In this paper, we study modifications to the so-called Golden RAtio ALgorithm (GRAAL) for variational inequalities—a method which uses a fully explicit adaptive step-size and provides convergence results under local Lipschitz assumptions without requiring backtracking. We present and analyse two Bregman modifications to GRAAL: the first uses a fixed step size and converges under global Lipschitz assumptions, and the second uses an adaptive step-size rule. Numerical performance of the former method is demonstrated on a bimatrix game arising in network communication, and of the latter on two problems, namely, power allocation in Gaussian communication channels and N-person Cournot completion games. In all of these applications, an appropriately chosen Bregman distance simplifies the projection steps computed as part of the algorithm.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

Reference50 articles.

1. Adolphs, L., Daneshmand, H., Lucchi, A., Hofmann, T.: Local saddle point optimization: A curvature exploitation approach. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 486–495. PMLR (2019)

2. Akimoto, Y.: Saddle point optimization with approximate minimization oracle. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 493–501. ACM (2021)

3. Alacaoglu, A., Malitsky, Y., Cevher, V.: Convergence of adaptive algorithms for weakly convex constrained optimization. In: Advances in Neural Information Processing Systems (2021)

4. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4(1), 27–67 (1997)

5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer, New York (2011)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3