Abstract
AbstractLet $$\Omega \subset \mathbb {R}^n$$
Ω
⊂
R
n
be an open, bounded and Lipschitz set. We consider the Poisson problem for the p-Laplace operator associated to $$\Omega $$
Ω
with Robin boundary conditions. In this setting, we study the equality case in the Talenti-type comparison: we prove that the equality is achieved only if $$\Omega $$
Ω
is a ball and both the solution u and the right-hand side f of the Poisson equation are radial and decreasing.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Alvino, A., Chiacchio, F., Nitsch, C., Trombetti, C.: Sharp estimates for solutions to elliptic problems with mixed boundary conditions. J. Math. Pures Appl. 152, 251–261 (2021)
2. Alvino, A., Ferone, V., Trombetti, G., Lions, P.-L.: Convex symmetrization and applications. Ann. Inst. H. Poincaré C Anal. Non Linéaire 14(2), 275–293 (1997)
3. Alvino, A., Lions, P.-L., Trombetti, G.: A remark on comparison results via symmetrization. Proc. R. Soc. Edinb.Sect. A 102(1–2), 37–48 (1986)
4. Alvino, A., Lions, P.-L., Trombetti, G.: Comparison results for elliptic and parabolic equations via Schwarz symmetrization. Ann. Inst. H. Poincaré Anal. Non Linéaire 7(2), 37–65 (1990)
5. Alvino, A., Nitsch, C., Trombetti, C.: A Talenti comparison result for solutions to elliptic problems with Robin boundary conditions. Communications on Pure and Applied Mathematics