Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Reference63 articles.
1. Ahookhosh, M., Themelis, A., Patrinos, P.: A Bregman forward-backward linesearch algorithm for nonconvex composite optimization: superlinear convergence to nonisolated local minima. SIAM J. Optim. 31(1), 653–685 (2021). https://doi.org/10.1137/19M1264783
2. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertain. Quant. 5(1), 1166–1192 (2017). https://doi.org/10.1137/16M106306X
3. Asi, H., Duchi, J.C.: Modeling simple structures and geometry for better stochastic optimization algorithms. In: Chaudhuri, K., Sugiyama, M. (eds) The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, Proceedings of Machine Learning Research, vol. 89, pp. 2425–2434. PMLR (2019)
4. Auslender, A., Teboulle, M.: Projected subgradient methods with non-Euclidean distances for non-differentiable convex minimization and variational inequalities. Math. Program. 120(1), 27–48 (2009). https://doi.org/10.1007/s10107-007-0147-z
5. Balasubramanian, K., Ghadimi, S., Nguyen, A.: Stochastic multilevel composition optimization algorithms with level-independent convergence rates. SIAM J. Optim. 32(2), 519–544 (2022). https://doi.org/10.1137/21M1406222