An Exact Solution Algorithm for Integer Bilevel Programming with Application in Energy Market Optimization

Author:

Kozanidis GeorgeORCID,Kostarelou Eftychia

Abstract

AbstractWe develop an exact cutting plane solution algorithm for a special class of bilevel programming models utilized for optimal price-bidding of energy producers in day-ahead electricity markets. The proposed methodology utilizes a suitable reformulation in which a key prerequisite for global optimality, termed bilevel feasibility, is relaxed. Solving the problem to global optimality involves finding the price-offers of the strategic producer (upper-level decision variables) which maximize his self-profit upon clearing of the market and identification of the optimal energy quantity distribution (lower-level decision variables). To exclude from consideration the encountered bilevel infeasible solutions, the algorithm employs a special type of valid cuts drawn from the theory of integer parametric programming. The generation of these cuts involves finding the truly optimal lower-level solution using the strategic price-offers at the bilevel infeasible solution subject to exclusion and devising range intervals for these offers such that the optimality of this solution is retained when each of them lies in its corresponding interval. Each cut imposes a suitable part of this solution, under the condition that each price-offer belongs to its associated interval, which renders the bilevel infeasible solution invalid. We establish the theoretical framework for the development of the proposed algorithm, we illustrate its application on a small case study, and we present extensive computational results demonstrating its behavior and performance on random problem instances. These results indicate that the algorithm is capable of solving to global optimality considerably larger problems than those that a previous elementary version of the same algorithm could solve. This constitutes significant research contribution, considering the lack of generic optimization software for bilevel programming, as well as the fact that the applicability of specialized algorithms on problems of realistic size is rather limited.

Funder

University of Thessaly Central Library

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3