Coupled Variational Inequalities: Existence, Stability and Optimal Control

Author:

Liu Jinjie,Yang Xinmin,Zeng ShengdaORCID,Zhao Yong

Abstract

AbstractIn this paper, we introduce and investigate a new kind of coupled systems, called coupled variational inequalities, which consist of two elliptic mixed variational inequalities on Banach spaces. Under general assumptions, by employing Kakutani-Ky Fan fixed point theorem combined with Minty technique, we prove that the set of solutions for the coupled variational inequality (CVI, for short) under consideration is nonempty and weak compact. Then, two uniqueness theorems are delivered via using the monotonicity arguments, and a stability result for the solutions of CVI is proposed, through the perturbations of duality mappings. Furthermore, an optimal control problem governed by CVI is introduced, and a solvability result for the optimal control problem is established. Finally, to illustrate the applicability of the theoretical results, we study a coupled elliptic mixed boundary value system with nonlocal effect and multivalued boundary conditions, and a feedback control problem involving a least energy condition with respect to the control variable, respectively.

Funder

NNSF of China Grant

European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement

National Science Center of Poland under Preludium Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3