Abstract
AbstractGiven a set $$T\subseteq {\mathbb {R}}^{n}$$
T
⊆
R
n
and a nonnegative function r defined on T, we consider the power of $$x\in {\mathbb {R}}^{n}$$
x
∈
R
n
with respect to the sphere with center $$t\in T$$
t
∈
T
and radius $$r\left( t\right) ,$$
r
t
,
that is, $$ {p_r\left( x,t\right) }:=\left\| x-t\right\| ^{2}-r^{2}\left( t\right) ,$$
p
r
x
,
t
:
=
x
-
t
2
-
r
2
t
,
with $$\left\| \cdot \right\| $$
·
denoting the Euclidean distance. The corresponding power cell of $$s\in T$$
s
∈
T
is the set $$\begin{aligned} C_{T}^{r}(s):=\{x\in {\mathbb {R}}^{n}:{ p_r}(x,s)\le {p_r}(x,t),\ \text{ for } \text{ all }\ t\in T\}. \end{aligned}$$
C
T
r
(
s
)
:
=
{
x
∈
R
n
:
p
r
(
x
,
s
)
≤
p
r
(
x
,
t
)
,
for
all
t
∈
T
}
.
We study the structure of such cells and investigate the assumptions on r that allow for generalizing known results on classical Voronoi cells.
Funder
Ministerio de Ciencia e Innovación
Universitat Autònoma de Barcelona
Publisher
Springer Science and Business Media LLC