Most Iterations of Projections Converge

Author:

Thimm Daylen K.ORCID

Abstract

AbstractConsider three closed linear subspaces $$C_1, C_2,$$ C 1 , C 2 , and $$C_3$$ C 3 of a Hilbert space H and the orthogonal projections $$P_1, P_2$$ P 1 , P 2 and $$P_3$$ P 3 onto them. Halperin showed that a point in $$C_1\cap C_2 \cap C_3$$ C 1 C 2 C 3 can be found by iteratively projecting any point $$x_0 \in H$$ x 0 H onto all the sets in a periodic fashion. The limit point is then the projection of $$x_0$$ x 0 onto $$C_1\cap C_2 \cap C_3$$ C 1 C 2 C 3 . Nevertheless, a non-periodic projection order may lead to a non-convergent projection series, as shown by Kopecká, Müller, and Paszkiewicz. This raises the question how many projection orders in $$\{1,2,3\}^{\mathbb {N}}$$ { 1 , 2 , 3 } N are “well behaved” in the sense that they lead to a convergent projection series. Melo, da Cruz Neto, and de Brito provided a necessary and sufficient condition under which the projection series converges and showed that the “well behaved” projection orders form a large subset in the sense of having full product measure. We show that also from a topological viewpoint the set of “well behaved” projection orders is a large subset: it contains a dense $$G_\delta $$ G δ subset with respect to the product topology. Furthermore, we analyze why the proof of the measure theoretic case cannot be directly adapted to the topological setting.

Funder

Universität Innsbruck

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3