Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Reference37 articles.
1. Armand, P., Benoist, J.: A local convergence property of primal–dual methods for nonlinear programming. Math. Program. 115(2, Ser. A), 199–222 (2008). https://doi.org/10.1007/s10107-007-0136-2
2. Armand, P., Benoist, J., Dussault, J.P.: Local path-following property of inexact interior methods in nonlinear programming. Comput. Optim. Appl. 52(1), 209–238 (2012). https://doi.org/10.1007/s10589-011-9406-2
3. Armand, P., Benoist, J., Orban, D.: Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming. Comput. Optim. Appl. 41(1), 1–25 (2008). https://doi.org/10.1007/s10589-007-9095-z
4. Byrd, R.H., Liu, G., Nocedal, J.: On the local behaviour of an interior point method for nonlinear programming. In: Numerical Analysis 1997 (Dundee), Pitman Research Notes in Mathematical Series, vol. 380, pp. 37–56. Longman, Harlow (1998)
5. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89(3), 507–541 (1996). https://doi.org/10.1007/BF02275347