Biocontrol efficacy of endophytic fungus, Acremonium sclerotigenum, against Meloidogyne incognita under in vitro and in vivo conditions

Author:

Yao Yurong,Huo Jianfei,Ben Haiyan,Gao Wei,Hao Yongjuan,Wang Wanli,Xu Jingyang

Abstract

AbstractBiocontrol microorganisms are important tools for the control of root knot nematodes (Meloidogyne spp.). Endophytic fungi have shown great potential as biocontrol agents in such applications. We here isolated an endophytic fungus from tomato root galls infected with M. incognita and identified the isolate as Acremonium sclerotigenum based on morphology and the internal transcribed spacer sequence. The biocontrol potential of this fungus was evaluated both in vitro and in vivo. Specifically, in vitro analyses were conducted to determine the potential of A. sclerotigenum to increase Meloidogyne incognita juvenile (J2 stage) mortality and decrease M. incognita egg hatching rates. The results revealed that A. sclerotigenum culture filtrates caused high J2 mortality rates (up to 95.5%) and significantly inhibited egg hatching (by up to ~ 43%). Furthermore, eggs treated with the culture filtrate were disaggregated and could not develop into nematodes. An in vivo experiment showed that treatment of tomato plants with A. sclerotigenum suppressed root knot nematode populations and significantly reduced the galling index. Both A. sclerotigenum treatment and exposure to the nematicide abamectin had good control effects, with efficacy rates of 55.43% and 70.58%, respectively. In summary, the endophytic fungus A. sclerotigenum here showed excellent potential for biocontrol of M. incognita. Further studies should be conducted to identify the nematicidal compounds produced by this fungus and to establish the molecular mechanism of action associated with the observed biocontrol effects.

Funder

Innovative Research for Young Scientists of Tianjin Academy of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Genetics,Molecular Biology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3