Quantitative and physiological behavior techniques to investigate the evolution of monospecies biofilm of pathogenic bacteria on material surfaces

Author:

Hemdan Bahaa A.ORCID,El-Liethy Mohamed Azab,El-Taweel Gamila E.

Abstract

Abstract In most natural habitats, microbes are not discovered in the planktonic phase but in multispecies biofilm communities. Bacteria in diverse microbial biofilm may interact or conflict relying on the varieties and features of solid surfaces. Hence, mono-species biofilm formed some potentially Gram-negative pathogenic species, including Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa, on two different materials: stainless steel (SS) and polypropylene (PP) were investigated. The developed biofilm was comprehensively studied using different approaches. Results displayed that the biofilm developed upon SS was more intensive than on PP. Statistically, a compelling correlation with significance was recorded between the biofilm age and increasing bacterial biofilm populations formed upon PP and SS materials. Likewise, the excellent levels of produced adenosine triphosphate (ATP) from the biofilm formed upon both PP and SS were reached after 80 days. The scanning electron microscope (SEM) micrographs exhibited the surface structure of biofilm for E. coli, S. enterica, and P. aeruginosa developed upon two materials (PP and SS). The results show that, the formed biofilm cells for all tested bacterial strains grown upon PP material were more minor than SS. In conclusion, the existing investigation delivers better knowledge about the approaches that could be applied to investigate biofilm formation on various surface materials. Likewise, biopolymers such as extracellular polymeric substances (EPS) play a critical role in establishing clusters and microcolonies.

Funder

Academy of Scientific Research and Technology

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Genetics,Molecular Biology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3