Hydrogen, helium and thermo-acoustic refrigerators

Author:

Prashantha B. G.ORCID,Narasimham G. S. V. L.,Seetharamu S.,Hemadri Vinayak B.

Abstract

AbstractIn this work the design and analysis of 1 kW thermo-acoustic refrigerators with hydrogen and helium for the temperature difference of 38 K is discussed. Helium is the best for thermoacoustic refrigerators compared to the other competent gases. But hydrogen is chosen since it is less expensive and better thermophysical properties compared to helium. The best parallel plates geometry with 15% blockage is chosen for the stack and heat exchangers. The effect of resonance frequency of hydrogen and helium varying from 400–600 Hz on the theoretical performance is discussed. The coefficient of performance and the power density of 1.65 and 40.3 kW/m3 for hydrogen, and 1.58 and 19.2 kW/m3 for helium is reported for the optimized designs, respectively. The theoretical results are compared with the DeltaEC software results, shows the cooling power and coefficient of performance of 590 W and 1.11 for hydrogen, and 687 W and 1.25 for helium, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and analysis of thermoacoustic air source heat pump water heaters;International Journal of Air-Conditioning and Refrigeration;2024-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3