An optimization approach in the development of a new correlation for two-phase heat transfer coefficient of R744 in a microchannel

Author:

Wan Zaidi Wan Muhammad Zaid,Mohd-Yunos Yushazaziah,Mohd-Ghazali Normah,Pamitran Agus Sunjarianto,Oh Jong-Taek

Abstract

AbstractTo date, no single method has been found to satisfactorily predict the two-phase heat transfer coefficient of R744 refrigerant in small channels. Studies are continuously being done to obtain a coefficient with acceptable mean absolute error (MAE) which measures the difference between the predicted and experimentally determined coefficient values. It is important to have available accurate heat transfer coefficient correlation for the two-phase heat transfer coefficient so that a compact heat exchanger that maximizes device performance while reducing cost and energy needs can be designed. In this study, genetic algorithm (GA) is used as an optimization tool to achieve a more accurate correlation for R744 in a microchannel by minimizing the MAE. Over 536 sets of experimental data from previous studies were utilized, optimizing the six constants appearing in the force convective factor, F, and nucleate boiling suppression factor, S, of the selected superposition correlation. The results showed that the MAE between the newly optimized correlation and selected experimental data at all ranges of vapor quality has been successfully reduced from 38.39 to 34.40%. With more available data, the suggested method can be utilized to achieve a more accurate empirical prediction that matches well with the experimental data.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3