Comparative performance investigation of a dual evaporator cycle using an ejector with the conventional cycle using a pressure reducing valve

Author:

Sachdeva Gulshan,Jaiswar Ajay,Anuradha Parinam,Jain VaibhavORCID

Abstract

AbstractThe performance of a dual evaporator cycle using ejector is compared with a conventional cycle employing pressure reducing valve. In both the systems, high temperature evaporator is considered as a flooded evaporator, thus a separator is employed after the high temperature evaporator. However, low temperature evaporator is a kind of conventional dry evaporator. The comparison of both systems, i.e., conventional and ejector assisted, is done for the same cooling capacities and same dryness fraction at the exit of high temperature evaporator with R134a, R152a, and R1234yf refrigerants. The effects of varying the states of refrigerant at the exit of flooded evaporator, and temperatures of both the evaporators and the condenser are analyzed using Engineering Equation Solver. It is found that the compressor work is reduced in both the cycles with the rise in low temperature evaporator temperature; however, a little variation is observed in the total cooling effect. The cooling effect in high temperature evaporator is increased with the increase in dryness fraction at the exit of the high temperature flooded evaporator, but it is decreased in low temperature evaporator.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3