Abstract
AbstractThe path-following scheme in Loisel and Maxwell (SIAM J Matrix Anal Appl 39(4):1726–1749, 2018) is adapted to efficiently calculate the dispersion relation curve for linear surface waves on an arbitrary vertical shear current. This is equivalent to solving the Rayleigh stability equation with linearized free-surface boundary condition for each sought point on the curve. Taking advantage of the analyticity of the dispersion relation, a path-following or continuation approach is adopted. The problem is discretized using a collocation scheme, parametrized along either a radial or angular path in the wave vector plane, and differentiated to yield a system of ODEs. After an initial eigenproblem solve using QZ decomposition, numerical integration proceeds along the curve using linear solves as the Runge–Kutta $$F(\cdot )$$
F
(
·
)
function; thus, many QZ decompositions on a size 2N companion matrix are exchanged for one QZ decomposition and a small number of linear solves on a size N matrix. A piecewise interpolant provides dense output. The integration represents a nominal setup cost whereafter very many points can be computed at negligible cost whilst preserving high accuracy. Furthermore, a two-dimensional interpolant suitable for scattered data query points in the wave vector plane is described. Finally, a comparison is made with existing numerical methods for this problem, revealing that the path-following scheme is the most competitive algorithm for this problem whenever calculating more than circa 1,000 data points or relative normwise accuracy better than $$10^{-4}$$
10
-
4
is sought.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Modeling and Simulation,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献