Transcriptome assembly and expression profiling of the molecular responses to cadmium toxicity in cerebral ganglia of wolf spider Pardosa pseudoannulata (Araneae: Lycosidae)

Author:

Yang Huilin,Peng Yuande,Shi Yixue,Tian Jianxiang,Wang Juan,Peng Xianjin,Xie Chunliang,Xu Xiang,Song Qisheng,Wang Zhi,Lv Zhiyue

Abstract

AbstractCadmium (Cd) is a heavy metal that can cause irreversible toxicity to animals, and is an environmental pollutant in farmlands. Spiders are considered to be an excellent model for investigating the impacts of heavy metals on the environment. To date, the changes at the molecular level in the cerebral ganglia of spiders are poorly understood. Cd exposure leads to strong damage in the nervous system, such as apoptosis and necrosis of nerve cells, therefore we conducted a transcriptomic analysis of Pardosa pseudoannulata cerebral ganglia under Cd stress to profile differential gene expression (DGE). We obtained a total of 123,328 assembled unigenes, and 1441 Cd stress-associated DEGs between the Cd-treated and control groups. Expression profile analysis demonstrated that many genes involved in calcium signaling, cGMP—PKG signaling, tyrosine metabolism, phototransduction–fly, melanogenesis and isoquinoline alkaloid biosynthesis were up-regulated under Cd stress, whereas oxidative phosphorylation-related, nervous disease-associated, non-alcoholic fatty liver disease-associated, and ribosomal-associated genes were down-regulated. Here, we provide a comprehensive set of DEGs influenced by Cd stress, and heavy metal stress, and provide new information for elucidating the neurotoxic mechanisms of Cd stress in spiders.

Funder

National Natural Science Foundation of China

Project of Science and Technology Department of Hunan Province

Agricultural Science and Technology Innovation Program of China

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3