Lethal and sublethal effects of toxicants on bumble bee populations: a modelling approach

Author:

Banks J. E.ORCID,Banks H. T.,Myers N.,Laubmeier A. N.,Bommarco R.

Abstract

AbstractPollinator decline worldwide is well-documented; globally, chemical pesticides (especially the class of pesticides known as neonicotinoids) have been implicated in hymenopteran decline, but the mechanics and drivers of population trends and dynamics of wild bees is poorly understood. Declines and shifts in community composition of bumble bees (Bombus spp.) have been documented in North America and Europe, with a suite of lethal and sub-lethal effects of pesticides on bumble bee populations documented. We employ a mathematical model parameterized with values taken from the literature that uses differential equations to track bumble bee populations through time in order to attain a better understanding of toxicant effects on a developing colony of bumble bees. We use a delay differential equation (DDE) model, which requires fewer parameter estimations than agent-based models while affording us the ability to explicitly describe the effect of larval incubation and colony history on population outcomes. We explore how both lethal and sublethal effects such as reduced foraging ability may combine to affect population outcomes, and discuss the implications for the protection and conservation of ecosystem services.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3