Abstract
AbstractMercury contamination is a widespread phenomenon that impacts ecosystems worldwide. Artisanal Small Scale Gold Mining (ASGM) activities are responsible for more than a third of atmospheric Hg emission. Due to Hg toxicity and its broad and elevated prevalence in the environment resulting from ASGM activities in the tropics, its biomonitoring is essential to better understand the availability of its methylmercury (MeHg) form in the environment. The Minamata Convention was ratified with the objective to “protect human health and the environment from anthropogenic emissions and releases of mercury compounds”. Biomagnification of MeHg occurs through the trophic food web, where it biomagnifies and bioaccumulates in top predators. To monitor environmental MeHg contamination, studies have evaluated the use of living organisms; however, reptiles are among the least documented vertebrates regarding MeHg exposure. In this review we evaluate the use of crocodylians for Hg biomonitoring in tropical ecosystems. We found that out of the 28 crocodiles species, only 10 have been evaluated regarding Hg contamination. The remaining challenges when using this taxon for Hg biomonitoring are inconsistencies in the applied methodology (e.g., wet versus dry weight, tissues used, quantification method). However, due to their life history traits, crocodylians are particularly relevant for monitoring MeHg contamination in regions where ASGM activities occur. In conclusion and given their ecological and socio-economic importance, crocodylians are at great risk of MeHg contamination and are excellent bioindicators for tropical ecosystems.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献