Author:
Carlson Erik S.,Fretham Stephanie J. B.,Unger Erica,O’Connor Michael,Petryk Anna,Schallert Timothy,Rao Raghavendra,Tkac Ivan,Georgieff Michael K.
Abstract
Abstract
Iron deficiency (ID) is the most common gestational micronutrient deficiency in the world, targets the fetal hippocampus and striatum and results in long-term behavioral abnormalities. These structures primarily mediate spatial and procedural memory, respectively, in the rodent but have interconnections that result in competition or cooperation during cognitive tasks. We determined whether ID-induced impairment of one alters the function of the other by genetically inducing a 40% reduction of hippocampus iron content in late fetal life in mice and measuring dorsal striatal gene expression and metabolism and the behavioral balance between the two memory systems in adulthood. Slc11a2
hipp/hipp mice had similar striatum iron content, but 18% lower glucose and 44% lower lactate levels, a 30% higher phosphocreatine:creatine ratio, and reduced iron transporter gene expression compared to wild type (WT) littermates, implying reduced striatal metabolic function. Slc11a2
hipp/hipp mice had longer mean escape times on a cued task paradigm implying impaired procedural memory. Nevertheless, when hippocampal and striatal memory systems were placed in competition using a Morris Water Maze task that alternates spatial navigation and visual cued responses during training, and forces a choice between hippocampal and striatal strategies during probe trials, Slc11a2
hipp/hipp mice used the hippocampus-dependent response less often (25%) and the visual cued response more often (75%) compared to WT littermates that used both strategies approximately equally. Hippocampal ID not only reduces spatial recognition memory performance but also affects systems that support procedural memory, suggesting an altered balance between memory systems.
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Clinical Neurology,Pathology and Forensic Medicine,Pediatrics, Perinatology, and Child Health
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献