Author:
Knickmeyer Rebecca Christine,Davenport Marsha
Abstract
Abstract
Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research.
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Neurology (clinical),Pathology and Forensic Medicine,Pediatrics, Perinatology and Child Health
Reference169 articles.
1. Achenbach TM. Manual for the Child Behavior Checklist and 1991 Profile. Burlington: University of Vermont Department of Psychiatry; 1991.
2. Adem A, Jossan SS, Dargy R, Gillberg PG, Nordberg A, Winblad B, et al. Insulin-like growth factor-I (Igf-1) receptors in the human brain—quantitative autoradiographic localization. Brain Res. 1989;503(2):299–303.
3. Albrecht L, Styne D. Laboratory testing of gonadal steroids in children. Pediatr Endocrinol Rev. 2007;5 Suppl 1:599–6097.
4. Amundson E, Boman UW, Barrenas ML, Bryman I, Landin-Wilhelmsen K. Impact of growth hormone therapy on quality of life in adults with Turner syndrome. J Clin Endocrinol Metab. 2010;95(3):1355–9.
5. Ashworth A, Rastan S, Lovellbadge R, Kay G. X-chromosome inactivation may explain the difference in viability of XO humans and mice. Nature. 1991;351(6325):406–8.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献